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In this work, polymerization with directional isomerism is studied theoretically by means of a 
non-steady-state method. The molecular-weight distribution function and some molecular parameters of 
the resulting polymer are rigorously derived. During the process of solving the kinetic differential equations, 
the Laplace transform and graph theory are employed. The theoretical results obtained are also applicable 
to anionic polymerization proceeding by a bimodal mechanism. 
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I N T R O D U C T I O N  

Directional isomerism in polymer chains frequently 
occurs during the polymerization of some asymmetrical 
monomers, such as vinylidene fluoride ~, propylene 
oxide 2~  and phenyl glycidyl ether 5'6, and results in 
irregular sequences (head-to-head and tail-to-tail linkages) 
in the polymer chains. Several workers 7-9 have studied, 
both experimentally and statistically, the chain micro- 
structures of polymers with directional isomerism. In the 
first paper 1° of this series, we dealt theoretically with the 
same problem in terms of a non-steady-state kinetic 
method, and connected the microstructural parameters 
of the polymer, such as the head-to-tail sequence 
distribution, average sequence length of head-to-tail 
structures, the concentrations of head-to-head and tail- 
to-tail enchainments and various dyad and triad fractions, 
with polymerization conditions, so that the microstructure 
of the resulting polymer can be predicted in accordance 
with reaction conditions. This work applies the same 
theoretical method to give rigorous expressions for 
the molecular size distribution and other molecular 
parameters for a polymerization with directional 
isomerism. 

MOLECULAR SIZE DISTRIBUTION 

For  the anionic polymerization of asymmetrical mono- 
mers without transfer and termination, the reaction 
scheme can be given by: 
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Here I denotes the initiator, and monomer M is omitted; 
H.  and T. are the resultant n-mers with, respectively, the 
substituted and unsubstituted carbons at the growing 
chain ends; kht is one of the rate constants for chain 
propagation, subscripts h and t symbolizing that the tail 
(unsubstituted carbon) of a monomer adds to the growing 
species with substituted carbon at the chain end; ktt, kth 
and khh have similar meanings. 

The set of kinetic differential equations corresponding 
to the scheme can be listed immediately: 

d H 1 / d t  = - (khh + kht)MH1 (1) 

d H J d t  = k h t M H  n_ 1 "}- kt tMTn - 1 - (khh + k h t ) M H .  (2) 

dT1 /d t  = - (kth + k t t ) M T  1 (3) 

d T J d t  = k t h M T  ._  , + k h h M H  ._  1 -- (kth + kt t )M T.  (4) 

where italics are used to denote concentrations of the 
corresponding species, for simplicity of notation. 

The initial conditions for the set of equations are: 

Ml,=o = M o -  Io n l l , = o  = n o  r,l,= o = To 

H.>,I,=o = T.> 11,=o =0  

where I o and M o are the initial concentrations of the 
initiator and monomer respectively. In accordance with 
material balance and instantaneous initiation, we have: 

( n , +  T . ) = n o +  T o = I o  (5) 
n = l  

Putting 

;o x = M dt (6) 

equations (1)--(4) become: 

d H 1 / d x  = - (kh, + khh)H1 (7) 

d H . / d x  = khtH n _ 1 + ktt Tn - 1 - (klat + khh)H. (8) 

d T , / d x  = - (kth + kit)T1 (9) 

d T . / d x  = kthT. - x + k h h H . -  ~ -- (kth + ktt)T. (10) 
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The corresponding initial conditions are accordingly 
transformed into: 

Mlx=o--Mo-Io n l l x = o = n o  

r,l,=o = To H.>, lx=o = T.> 11==o = 0  
According to the definitions of the Laplace transform, 

we have" 

f; L. = e - Z~H. dx 

;o o M. = e-  Z~T. dx 

~" oo - z ~  dH. 
2 L . - H . ( 0 ) = J o  e dx dx 

;o o AM.-  T.(O) = e_Z~ d r .  dx 
dx 

Then, equations (7)-(10) can be transformed into a set 
of algebraic equations: 

,~, + khh + kht 
L I = I  (12) 

Ho 

(2+khh+kht)L.--khtL._l- kttM. _ 1 =0  (13) 

,~ + kth + ktt 
M 1 = 1 (14) 

To 

(2 + kth + k t t )M . - kthM ._  1 - khhL. -  1 = 0 (15 )  

The above set of algebraic equations can be expressed in 
the alternative form: 

w ,  t L , ~  t I ' 

0 w 2 0 M I |  I 

- k . ,  kt, u L2 I 0 

--khh --kth 0 V M , I  0 

0 0 --kla ' --ktt U L~ I = 

k,. k,~ o v M,/ 

i i i i i i I i 
0 . . .  kh~ k.  u L .  I 0 

0 0 0 0 0 . . .  --khh --kth 0 ~M. * 0  

(16) 

where, for convenience, we have put: 

~, + khh + kht ,~ + kth + kt t 
W1 - -  _ _  W 2 = 

Ho To 

U = ~ + khh -~- kht V = ~, + kth + k t t  

By way of a graph-theory technique 11, t 2 (Cfo Appendix) 
the expressions for H. and T. can be obtained: 

H. -H°(khtx)'- le-O'ht +khu)x 1 + t 
( n -  1)! = f ( l - -  1, n - -  1, K )  

+(\kthHokhtT° - l ) f ( / - 1 ,  n - i - 1 ,  K)](kth~"-tFl(n-l,d\~t/i n, Z)} 

(17) 

and 

T.- To(kthX)n-le-(kth+ktt)x{ l+t="-=~i [ 
(n-- 1)! f(l--1, n--l,K) 

+( k-thH°- 1)f ( l -  1, n - l -  q/k \ .- t  
\khtTo 1, K ) J ( , 7  J F I ( . - I  , n,--Z)} 

(18) 
where 

K - khhku Z = (kht + khh --  kth --  ktt)x 
khtkth 

min'  '' (:) (:) 
f(n,m,K)= ~ K'=F(-n, -m, 1, K) (19) 

i = 0  

is the Gauss hypergeometric function, and 

FI(O,c,y)=I+ ~ f i  (a+i--l~y" 
. = , ; = 1  \~ + ~ i - -  1 / ~  (20) 

is a confluent hypergeometric function known as the 
Kummer function. 

Obviously, the molecular size distribution function for 
the polymer with n monomeric units should be: 

N.=H.+T, (21) 

On the basis of equations (17), (18) and (21), the other 
molecular parameters can be derived. 

AVERAGE DEGREE OF POLYMERIZATION 

To calculate the number- and weight-average degrees of 
polymerization, the various statistical moments are first 
required. 

The zero-order moment for N. has been given by 
equation (5). Combination of equations (7) and (8) with 
(9) and (10) leads to: 

d ~n nSN, oo 
1 

= (kht + khh) ~ [(n + 1)'-- nqn. + (kth + ktt) 
. = 1  

(s = 1, 2) (22) 

dx 

x ~ [(n+l)'-n']T. 
n = l  

Solving equation (22) gives: 

( ; ) 0?(1--e-eX) nN.=I o 1+ x + ~  
n = l  

) 0 ,  x + ( 1 - e  -*x) 
n=l (P 

(23) 

+ 2[(kht + khh)Ho + (kth + ku)To]x + Io x2 

+ ~ 4  ~ (q~x e-*X+e - ~ -  1) 
¢ 

+ ~ 2 ( ~  (kthkhtOZo+°tY)-7) (e-'x+q)x-l) 

(24) 

where 

Ct = khtktt + kthkhh + 2khhktt fl = 2khhku --  khtkhh --  kthku 
0 = kht + khh - kth --  ktt ~ = khhH0 - kth T O q~ = khh + ktt 

The number- and weight-average degrees of polymeriz- 
ation are, respectively: 

P. = 1 + ~  x + ° ~  ~ , (1 - e  -~x) (25) 
tp /o~O" 

/~w = 1 + {2[(kh, + khh)H o + (kth + ktt)To]tp2x 
+ ~2IoX2 + (20flTAO 2)(~x e-*X + e-'px- 1 ) 
+ 20[(kthkhtIoO + ° ~ ) / ~  0 2  - 7 ]  

x (e-*X + tpx - 1)}/[Ioqo(tp+~x)+O7(1--e-*X)] (26) 
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A special case 
When only one kind of propagation is overwhelm- 

ingly predominant in the polymerization, the reaction 
mechanism is: 

fast kht kht 
I , H 1 , H 2 ~ H 3 . - .  

kht kht 
J H , _ I  , H . . . -  

which is the case of instantaneous initiation with no 
termination, that is, khh = kth = 0, T. ~ o = 0 and Zff= 1 H. = 
H o = I o. 

Then equation 07) becomes: 

Ho(khtx).- 1 e-khtx 
H. - (27) 

( n -  1)! 

which is exactly the standard Poisson distribution. 
Subsequently, equations (23) and (24) can be simplified 

t o :  

~ nN. = Io(1 + khtX ) (28) 
n = l  

~ n2N. = Io(1 + 3khtX + k2tx 2) (29) 
n = l  

Consequently, the number- and weight-average degrees 
of polymerization in this situation are respectively: 

en  = 1 "-I- khtX (30) 

Pw = I + khtX-t- kht--x (31) 
1 + khtx 

All the results obtained from the simpler case are in 
accordance with those in previous work a3'14. 

DISCUSSION 

To discuss the influence of reaction conditions on the 
molecular parameters of the resultant polymer, it is 
necessary to clarify the dependence of x on reaction 
conditions. From equation (23), the following formula is 
obtained: 

I° q~ - -  (1 - e-~X)] (32) 
+q~2 

where y denotes monomer conversion. On the other 
hand, the relationship between x and polymerization time 
t may be derived from equations (6) and (23): 

f o' dx t= Mo_io[( l  +~x/q~)+Oy(l_e_~,x)Ao2 ] (33) 

If we substitute initial conditions Mo and Io into equation 
(32) or (33), x can be  determined by iteration from 
monomer conversion y or reaction time t. Therefore, the 
molecular-weight distribution function, average molecular 
weight and dispersity may be plotted theoretically against 
y or Mo/lo, respectively. 

Figure I gives differential MWD curves at various 
monomer conversions. Small shoulder peaks appear in 
the MWD curves, which are possibly related to the 
bimodal mechanism, i.e. the presence of two types of 
active species with different propagation rates in the 
reaction system. Obviously, the low-molar-mass tails of 
the derived distribution arise from the contribution of 
species T,. The relation between the MWD and the ratio 
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Figure 1 The theoretical curves of molecular-weight distribution at 
various monomer conversions, y: W = nN/~,,~ 1 nN,, H 0 = 0.004 m o l l -  1, 
To = 0.001 mol 1-1, kht = 200 m o l - / ' s  -1, ~th'-- 100 m o l -  1 s -1, khh =ktt = 
2mo1-1 s - t ,  M o = l . 0 m o l ;  (A) y =  10%, (B) y = 3 0 % ,  (C) y = 5 0 %  
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Figure 2 The theoretical curves of molecular-weight distribution 
for different values of Mo/lo: y = 5 0 % ;  (A) Mo/lo=lO0, H o =  
0.008 mol 1 - l, To = 0.002 moi 1 - 1; (B) Mo/I o = 200, H o = 0.004 mol 1 - 1, 
To = 0.001 mol 1-1; other parameters are identical with those of Figure I 

of M0 to Io is shown in Figure 2. The MWDs in both 
Figures 1 and 2 are very narrow and the ratios of/3 w to 
P,  approach 1.0, which demonstrate that the bimodal 
nature of the mechanism does not affect the homogeneity 
of the living polymer generated from an anionic poly- 
merization. This theoretical conclusion is in agreement 
with the pertinent experimental data reported hitherto. 
Numerous anionic polymerizations with bimodal mech- 
anisms have been reported to date, which should be 
amenable to the kinetic scheme given in this work. An 
experimental test of our theory will be published in the 
third part of this series. 
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APPENDIX 

In equation (16), the coefficient matrix relates to the 
topology of this algebraic set, which is represented by 
the following graph: 

wl - k  u - k  

/ 

wa 

U U -k 

L .3" 

°° 

V V 

U -k U 

V 

In this graph, a vertex corresponds to a diagonal 
element in the triangular matrix, and an edge diverting 
from a vertex to the next is connected with one of the 
non-diagonal elements. Two initial vertices L~ and M 1 
have weights of (2 + khh q- kht)/H 0 and (2 + kth + ktt)/To, 
respectively. Each of the vertices L2, L 3 . . . . .  L. possesses 
equal weight (2 + khh + kht), and each of M 2, M 3 . . . . .  M. 
has the same weight (2 + kth +ktt). The weight of the edge 
diverting from vertex L. to L.+ x or from vertex M. to 
M.+ 1, where n/> 1, is -kht or --kth. The weight of the 
cross edge connecting vertex L, with vertex M.+ 1 or 
vertex M. with L, + 1 is - khh or - ktt. In accordance with 
the graph theory rule T M ,  the root L. or M. is 
determined by the paths from vertices Lx and M~ to 
vertex L. or M.. The contribution of each path to the 
expression for L, or M. is a fraction with a factor 
( - 1)"- ~, of which the numerator is a product composed 
of all edge weights in the path under consideration, and 
the denominator is a product of all vertex weights in the 
same path. Summarizing all of the contributions of every 
path, L. and M. can be derived. Let us consider the 
solution to L. first. 

There are two different initial vertices, L1 and Mx, 
which lead to vertex L.. It is straightforward to see that 
there are n vertices and n - 1  edges in every path from 
vertex L1 to L.. We assume that i pairs of edges go up 
and down between L-type and M-type vertices in the 

path, of which i edges have identical weight --khh and 
the other i edges possess equal weight -k t t ,  where 
i=0,  1 , 2 , . . . ,  ( n - l / 2 )  or n/2-1  (when n is odd, i= 
(n -  1)/2; otherwise i=n/2-1) .  Then such a path from 
vertex LI to L. can be shown as follows: 

L~ Llt L/l+l.m I Lll~.lz, m I L~ i-i L, " Lid i • z z j , z% x #  • ~. ~:,,,, xzj • z,,,, 
1=1 /=t 1=1 ,,=1 1=1 i=1 

M ,  i-I M , MII*I Mlltml Mll*lz~'mltl ~. lt*T. m)~.l ~ l ÷~ m. 
,,=l ]=l .,=l ; i=l j 

Let /=y.~+_-~ lj and m=E~=,mj, where n- i>l>~i+l ,  
then l + m = n, which means there are l L-type vertices, 
m M-type vertices and i paris of edges connecting the 
different kinds of vertices in the path. Based on the 
graph-theory rule described in the previous paragraph, 
the contribution of the path is: 

(- 1)n- I(__ khh)i(_ kn)i(_ kht)Z, (_  kth)~2 

[() .  "a t- kht "-b k h h ) / H o ] ( ,  ~, -I- kht "q'- khh)E3 (, ~, q- kth + ktt)E' 

kn, \khtkthJ \ 2  + kht + khhJ \2  + kth + kttJ 

where 
i+1 i 

El = 2 ( l j -  1) Y'2-- ~ (mj -  1) 
j = l  j = l  

i + 1  i 

~"~3: ~ ( l i -1)  E4= E mi 
j = l  j = l  

In the path there are l L-type vertices, (n- l )  M-type 
vertices and i pairs of edges connecting one kind of vertex 
with another. Accordingly there are 

arrangements of the vertices and edges. In other words, 
there are 

( l ~  X)(n i-_/1 1) 

paths having the same contribution to L,. Therefore, we 
obtain the total contributions of all the paths from L 1 
t o  Ln:  

1 H o  

+ kht + khh,/ 
(n - 1)/2 or  

+ 2 2 
i=, t=i+, i--1 

/ k  k \ i /  k \ l /  k \.-17 
h, I I  | I 

\ kh tk th / /  \,~. q- kht q" khhJ \ 2  + kth q- k t J  ] 

(A.I) 

L.* denotes the contribution of all the paths from vertex 
L, to L.. Similarly, L 2, the contribution of all the paths 
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from vertex M 1 to L., is: 
( n -  1)/2 o r  

, 

2_k T° ~ ~ \ i - - l J \  i--1 J Ln "-hh i = 1 l = i 

x \khtkth, ,/ \4 + k~-t+ khh,/ \ ~  C +  kti,,/ (A.2) 

Consequently, we have: 
1 2 L. = L. + L. 

(n - 1 )/2 or 

- k , t  L\2 + k~-~+ k + Z i = 1  

(khhktt~i( kh t ~l( kt h )n-l I TO + - -  
x \kh,kth/\2 + kht-t- khhJ \2 + kth + k,i khh 

( n -  1)/2 or 

× 2 2 i=x t=i i-1 

(khhktt~i( kh t ~,( kt h ~n-, 
x \kh-~-t / / \2 + k~--t_l_khh, ] \~d_k~-h_l_ktt// (A.3) 

Equation (A.3) can be transformed into: 

n='kht 2 d- kht-t- khh +1=~1 \2-{- kht + khh 

t=i+z\ i / \  i - 1  ,] 

x ( 2 +  kth Y- tF(1- l , l -n , l ,K)]  
kth + ktt/ .o).f( 

\khh ~ ,=, \2 + k~t+ khh/ 

( k,. )"-' 
F(1-- l , l+l-n, l ,K)  (A.4) 

X 2-I-kth+ktt 

Similarly, the contribution of all the paths from vertices 
L 1 and M1 to vertex M. is: 

k t h  d-  -{- ~ -[- k t t  , ]  

\2+ kh,+ kh. F(1 -l ,  l--n, 1, K) 

(H 0 To)~l( kt h ) l  
+ ~ kth ,=1 2+k,h+k,, 

( kh, )"-' 
x \2+kht+kh£ F(1--l,l+l-n, 1, K) 

(A.5) 
By making use of the inverse Laplace transform 15, 
equations (A.4) and (A.5) can be converted into equations 
(17) and (18), respectively. 
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